

1

Custom Level Entities:

Models, Overlays, and

PbrMaterials

Project: SnowRunner™

Version 0.9.4 of Oct 12, 2022

2

Contents

Revision History .. 5

1. Introduction ... 6

2. Custom Models ... 6

2.1. Files of the Model ... 6

2.1.1. Important Note on File Naming ... 7

2.2. Overview of the Process ... 8

2.2.1. Create the model in the 3D Package .. 8

2.2.2. Export a model to the FBX format .. 9

2.2.3. Create necessary textures for a model ... 9

2.2.4. Create the XML file of the Mesh ... 11

2.2.5. Create the XML file of the Class ... 12

2.2.6. Test the model in the Editor and the Game .. 13

2.2.7. Optional: Landmark model ... 13

2.3. Important Notes on Model Properties ... 16

2.3.0. Types of Models ... 16

2.3.1. Rules for All Models ... 16

2.3.1.1. Rule #1: Attributes for Instanced Rendering .. 16

2.3.1.2. Rule #2: DynamicModel parameter .. 17

2.3.1.3. Rule #3: Scenarios for Setup of Instancing for Various Types of Models 17

2.3.2. Rules for Configuring Physical Properties .. 18

2.3.2.1. Main Rules .. 18

2.3.2.2. Rules for Particular Types of Models ... 20

3. Custom Overlays... 22

3.1. Texture Overlays .. 22

3.1.1. Files of a Texture Overlay .. 22

3.1.2. Create necessary textures for an overlay ... 22

3.1.3. Create the XML file of the Class for an overlay .. 23

3.2. Geometric Overlays .. 24

3.2.1. Files of a Geometric Overlay .. 24

3.2.2. Create the model of an overlay in the 3D Package 25

3.2.3. Create textures for an overlay .. 26

3.2.4. Create the XML file of the Mesh for an overlay ... 27

3.2.5 Create the XML file of the Class for an overlay ... 27

3

4. Custom PbrMaterials .. 28

4.1. Files of a custom PbrMaterial ... 28

4.2. Create necessary textures for a PbrMaterial ... 28

4.3. Create the XML file of the Class for a PbrMaterial .. 30

5. <_templates> ... 32

6. Tags and Attributes of Models ... 33

6.2. <CombineXMesh> .. 33

6.2.1. <MeshLod> .. 33

6.2.2. <MeshShadow> ... 34

6.2.3. <Material> .. 34

6.2.3.1. <ModelMaterial> .. 34

6.3. <ModelBrand> .. 35

6.3.1. <PhysicsModel> ... 37

6.3.1.1. <Body> .. 39

6.3.1.1.1. <Constraint> ... 42

6.3.1.1.1.1. <Motor> .. 46

6.3.1.1.1.2. <PlaneConeMotor> ... 46

6.3.1.1.1.3. <AllMotor> .. 46

6.3.1.2. <Constraint> .. 47

6.3.1.3. <Flare> .. 47

6.3.2. <Occlusion> ... 48

6.3.3. <SnapPoint> .. 48

6.3.4. <GameData> ... 49

6.3.4.1. <WinchSocket> ... 49

6.3.4.2. <CraneSocket> .. 49

6.3.5. <Landmark> ... 50

6.3.6. <Subset>.. 50

6.3.7. <AnimSubset> ... 50

6.3.8. <TrackEvents> ... 50

6.3.9. <StaticLights> .. 51

6.3.9.1. <StaticLight> .. 51

7. Tags and Attributes of Overlays .. 52

7.1. <OverlayBrand> ... 52

7.1.1. <Prebuild> .. 53

4

7.2. <CombineXMesh> .. 54

7.2.1. <Material> .. 54

8. Tags and Attributes of PbrMaterials .. 55

8.1. <MaterialType> ... 55

9. Samples ... 58

9.1. Sample Model... 58

9.2. Sample Overlays .. 58

9.3. Sample PbrMaterials .. 58

Appendix ... 59

Appendix A: IDs of Sounds Used for PbrMaterials ... 59

5

Revision History

Version Changes

0.9.2 Initial public version.

0.9.3 • Changed the document name (“Creating a Custom Model” -> “Custom Level Entities.

Models, Overlays”).

• Changed the document structure. Added the information about custom overlays

creation, and changes in other sections on tags.

0.9.4 • Changed the document name (“Custom Level Entities. Models, Overlays” -> “Custom

Level Entities: Models, Overlays, and PbrMaterials”).

• Changed the document structure. Added the information about custom PbrMaterials:

4. Custom PbrMaterials, 8. Tags and Attributes of PbrMaterials

6

1. Introduction
This guide describes the creation of custom models, overlays and PbrMaterials for

SnowRunner™ Editor. After their creation and integration with the Editor, these models,

overlays and PbrMaterials can be used for creating new maps along with the regular

models, overlays and PbrMaterials.

2. Custom Models
This section provides information about how to create a custom model and use it in the

Editor.

2.1. Files of the Model

Usage of a custom model in the Editor requires the following files in the following folders:

Folder Files Comments

Media\meshes\models .fbx file of the mesh

.xml file of the mesh

The .fbx file of the model contains its mesh
and its collision mesh.

The .xml file of the mesh, stored in the
same folder, contains data on materials
(textures) of the model.

Media\textures\models .tga files of textures This folder should contain all textures that
were assigned to the mesh of the model in
the .xml file of the mesh.

Media\classes\models .xml file of the class The .xml file of the class of the model
defines its properties: instancing, physical
model, collisions, etc.

Optional (if you want to create a landmark model for your model):

Media\meshes\landmarks .fbx file of the
landmark model

.xml file of the mesh
of the landmark
model

If you want your model to appear on the
navigation map, the .fbx file and .xml file of
the mesh need to be created for the
landmark model. See 2.2.7. Optional:
Landmark model for details.

The meshes\models, textures\models, classes\models, and, optionally,

meshes\landmarks folders must be created in the Media folder, which is located in the

Documents\My Games\SnowRunner\ folder. The full path to the Media folder is

typically similar to the following:

C:\Users\<name_of_user>\Documents\My Games\SnowRunner\Media\

7

NOTE: If you are using the Public Test Server (PTS) version of the game, the path will

be similar, but with SnowRunnerBeta instead of SnowRunner.

2.1.1. Important Note on File Naming

All names of created files can contain only small Latin letters, digits, and "_".

Moreover, there is another important convention rule:

You should use the same name for the following files (except the file extension):

● FBX file (in the Media\meshes\models folder).

For example, “oil_pump_01.fbx”.

● XML file of the mesh (in the Media\meshes\models folder).

For example, “oil_pump_01.xml”.

● XML file of the class of the model (in the Media\classes\models folder).

For example, “oil_pump_01.xml”.

In this case, the system will be able to link all these files.

For trucks, we were required to specify the path to the XML file of the mesh in the

mandatory Mesh attribute of the <PhysicsModel> tag in the XML file of the class.

As opposed to trucks, for models it is not necessary and we omit the Mesh attribute in

the <PhysicsModel> tag. We can do it since the naming scheme allows the system to

find the XML file of the mesh by the name of the XML file of the class.

8

2.2. Overview of the Process

The subsections below give a brief overview of the process of creating a custom model.

NOTE: This overview does not include the important rules that should be followed when

specifying the properties of the model and particular tags used in XML files. They are

covered in the next chapters.

The sample files used for this overview can be found in the 9.1. Sample Model section.

2.2.1. Create the model in the 3D Package

During the creation of the 3D model, you need to adhere to the following rules in the 3D

modeling software you prefer:

● All meshes of the model must form a hierarchy, with one root node.

● The model must contain at least one visible mesh. Names of visible meshes

must contain only small Latin letters, digits, and "_"

● The model must contain at least one collision mesh. Names of collision meshes

should start with the “cdt_” prefix.

● The fewer number of visual meshes a model contains - the better (in terms of

performance). In most cases and for the setup of regular models, it's better to

use a single visual mesh.

● For dynamic and destructible models, we recommend you to use cdt meshes

with primitive shapes (boxes, cylinders, etc.) that contain as few triangles as

possible. When a cdt mesh has to be complex, it will be much better if it will be

convex at least (for the lesser drop of performance).

● When creating visual and cdt meshes of the model, ensure that these meshes

have exactly the same locations of pivots and exactly the same local transforms.

Thus, we recommend you to use “freeze transforms” + “reset transforms”

operations for these meshes in your 3D modeling software (names of these

operations may vary depending on the particular modeling tool). If these pivot

locations and transforms are different, this may result in various issues (e.g.

rotation of the model in the Editor will not match the model rotation in the game).

● All objects and meshes must have the identity scale. For example:

○ in Maya - it corresponds to the (1, 1, 1) scale,

○ in 3DS Max - to the (100, 100, 100) scale.

○ in Blender - to the (1, 1, 1) scale.

Ensure that the root frame and all meshes of the model have the identity rotation

(0, 0, 0).

Sample hierarchy of meshes of a custom model displayed in SnowRunner Editor is

shown below:

9

2.2.2. Export a model to the FBX format

SnowRunner uses the FBX file format for 3D models. So, you need to export your 3D

model to this format.

The operations here are similar to exporting your mod of the truck to FBX. For details,

see the “Exporting to Fbx: 3ds Max, Maya, and Blender” guide, available at

https://snowrunner.mod.io/guides/exporting-to-fbx-3ds-max-maya-and-blender.

After export, you need to put the resulting FBX file into the Media\meshes\models

folder.

The name of the FBX file should contain only Latin characters, digits, and underscores

(“_”). It must contain no spaces and no special characters (except “_”). Names with all

lowercase letters are much preferable, though the upper case is not forbidden.

E.g. “oil_pump_01.fbx”

2.2.3. Create necessary textures for a model

You need to create textures for your model and assign them (as materials) to your 3D

model during its creation in the 3D package.

After export to the FBX file, information about used textures is stored in the FBX file.

However, for each texture, the system takes only its name from the FBX file. All

properties of a texture are described in the XML file of the mesh (see 2.2.4 below).

https://snowrunner.mod.io/guides/exporting-to-fbx-3ds-max-maya-and-blender

10

NOTE: The fewer textures are assigned to a model, the better will be the performance of

the maps with this model.

You may use the same texture maps on different parts of the model. But, for example, if

one part should be able to become snowy in the game and the other one should be left

unchanged, then you should take this into account at the stage of creating the 3D model.

Particularly, in this case, you should create two materials with different names in the

FBX file, since, in this case, you will be able to set different parameters for them in XML

(the parameters responsible for snow cover). Each material in the FBX file corresponds

to a separate set of parameters in the XML description.

You can use any textures for your model. However, they must conform with certain rules

- see below.

Names of textures: Names can contain Latin characters, digits, and underscores ("_").

They must contain no special characters (except "_") and no spaces.

Suffixes in names: Textures should have corresponding suffixes (“postfixes”) in their

names, written after the original name of the texture. The typical texture set for a model

should include a diffuse texture with an optional alpha channel, normal map, and

shading map.

__postfix Type of Texture Parameter in XML of the mesh
(in the <Material> tag)

__d Diffuse (Albedo Map) AlbedoMap

__d_a Diffuse (Albedo Map) + Alpha AlbedoMap

__n_d Normal Map NormalMap

__sh_d Shading Map ShadingMap

__em_d Emissive Map EmissiveMap

Format: The files of textures must be in the .tga format.

Texture sizes: For proper mipmapping and filtering, dimensions of a texture should be

2Nx2M. I.e., each side of the texture should be the power of two, and its width does not

need to be equal to its height. Typical texture size for models should not exceed

2048x2048. Higher texture sizes for models might impact the performance or texture

streaming in general.

Location: You should put textures to the Media\textures\models folder.

11

2.2.4. Create the XML file of the Mesh

Now, you should create the XML file of the mesh for your FBX file in the

Media\meshes\models folder. You should name the created XML file as the FBX file,

e.g. “oil_pump_01.xml”.

In this file, you need to specify the links to all textures used by the model and some other

properties (see below).

Sample XML file of the mesh of the model:

<_templates Include="models" />

<CombineXMesh Type="Model">

 <MeshLod Distances="45, 140" HidingDistance="550"

MeshName="mesh" />

 <Material

 _template="DefaultNarrow"

 AlbedoMap="models/oilpump_01__d.tga"

 Name="oilpump_01_mat"

 NormalMap="models/oilpump_01__n_d.tga"

 ShadingMap="models/oilpump_01__sh_d.tga"

 />

 <Material

 AlbedoMap="models/pipes_set_01__d.tga"

 Name="pipes_set_01_mat"

 NormalMap="models/pipes_set_01__n_d.tga"

 ShadingMap="models/pipes_set_01__sh_d.tga"

 />

 <Material

 AlbedoMap="proxy/oil_pump_01__d.tga"

 Name="oil_pump_01_mat"

 />

</CombineXMesh>

For details on tags and attributes used here, please refer to the 6. Tags and Attributes of

Models chapter below.

As you can see, in the XML code here, we can inherit some code from templates. For

more details on this feature, see the “5.6. Templates (_templates)” section of the

Integration of Trucks and Addons guide (available at

https://snowrunner.mod.io/guides/integration-of-trucks-and-addons-part-2).

However, here we cannot create custom templates and can only use the existing ones,

stored in the initial.pak archive, in the [media]_templates\ folder. For example, here

we specify that we will use templates from the models.xml file there. And then, use the

DefaultNarrow template, which is contained by models.xml.

https://snowrunner.mod.io/guides/integration-of-trucks-and-addons-part-2

12

Assigning textures to the model is also described in the “7.2. <Material>” section of the

Integration of Trucks and Addons guide (available at

https://snowrunner.mod.io/guides/integration-of-trucks-and-addons-part-3). The same

properties of the material can be used here.

For each material, in the Name attribute, you need to specify the exact name of the

material from the FBX file.

When defining textures of this material (AlbedoMap, NormalMap, etc.) you need to

specify paths to the model’s textures that you put into the Media\textures\models folder

(see above). The paths here should be specified relative to the Media\textures\ folder.

NOTE: In the sample above, one of the textures is stored in the Media\textures\proxy

folder and the path to it is a bit different ("proxy/oil_pump_01__d.tga"). I.e., you can

have multiple folders with textures in Media\textures\ folder, if necessary.

2.2.5. Create the XML file of the Class

Create the XML file of the class of the model in the Media\classes\models folder.

You should name the created XML file as the FBX file and exactly as XML-mesh file,

e.g. “oil_pump_01.xml”.

In the created file, specify the properties of the model.

For example:

<ModelBrand

 Instanced="true"

 InstancedAsModel="true"

>

 <PhysicsModel>

 <Body Collisions="Dynamic" />

 </PhysicsModel>

</ModelBrand>

For details on tags and attributes used here, please refer to the 6. Tags and Attributes of

Models chapter below.

NOTE: The XML-class file in the sample archive also contains the optional <Landmark>

tag. For more details on it, see 2.2.7. Optional: Landmark model below.

https://snowrunner.mod.io/guides/integration-of-trucks-and-addons-part-3

13

2.2.6. Test the model in the Editor and the Game

If you have successfully created all these files, your custom model will appear in the

Editor. You will be able to add it to the map the same way you add regular models.

In the Select Asset window, it will be displayed with the “\Media” suffix, to show that this

is a custom model with source files in the Media folder.

After adding the model to the map and packing this map, you can view your model in the

game.

2.2.7. Optional: Landmark model

You may want to display some of your custom models on the navigation map. Typically,

this is done for medium or large models (similar to a typical cargo unit or larger). For

these models, you need to create and set up a landmark model.

To do this:

1. Create a landmark model in the 3D modeling tool of your choice.

The created model must meet the following requirements:

a. This must be a lowres model.

b. This model is expected to be using only one simple texture with solid

colors. This is necessary to keep all models displayed on the navigation

map in one style. The following texture should be used for all landmark

models:

14

i. landmark__d.tga

ii. This texture is available in the shared_textures.pak archive. It is

stored there as the [textures]\pct\models_landmark__d.pct

iii. In the XML-mesh file of the landmark model, you should specify

the "models/landmark__d.tga" value as a path to this texture.

NOTE: This texture should be assigned to a 3D model using a

single material, as a regular UV-mapping procedure for the mesh.

c. You need to use a single material for your landmark model. We strictly

recommend that.

d. Naming: Typically, landmark models have the “_lmk” postfix in their

names. E.g. oil_pump_01_lmk

2. Export this model to the FBX file the same way you did with the regular 3D

model.

3. Create the landmarks directory in the Media\meshes\ folder (if this directory is

not already created there). Put the FBX file of the model there.

For example, in our case, the path to the FBX file will be

Media\meshes\landmarks\oil_pump_01_lmk.fbx

4. Create an XML file of the mesh with the same name in the same directory.

For example, in our case, the XML-mesh file will be

Media\meshes\landmarks\oil_pump_01_lmk.xml

5. In this XML-mesh file, you need to assign our default texture for landmark objects

("models/landmark__d.tga", see above) to the material from the FBX file of the

landmark model.

Thus, the contents of this file are very simple and typically look like the following:

<CombineXMesh>

 <Material

 AlbedoMap="models/landmark__d.tga"

 Name="landmark_mat"

 />

</CombineXMesh>

15

where landmark_mat is the name of your material from the FBX file of the

landmark model.

6. Now, you need to modify the XML class of the original model (not the landmark

one, but the original one, e.g the “oil_pump_01.xml” in our example). You

should add the <Landmark> tag there with the Mesh attribute linking to the XML-

mesh file of the landmark model. This path should be specified relative to the

Media\meshes folder and without the file extension.

For example:

<Landmark Mesh="landmarks/oil_pump_01_lmk" />

7. If you open the XML-mesh file of the original model in the Editor, you will see that

the Landmark section is displayed in the hierarchy of the model and it displays

the contents of the FBX of the landmark model.

8. After repacking maps with this model, you will see that now your model is

displayed on the navigation map.

16

2.3. Important Notes on Model Properties

2.3.0. Types of Models

There are 3 main types of models basing on their properties:

1. Static - these models do not move, have no animations, are not breakable.

A model of this type contains no physical bodies with non-zero mass.

For example: initial.pak\[media]\classes\models\rock_03.xml

2. Dynamic - these models can move and have collisions during this movement.

A model of this type contains at least one physical body with non-zero mass. It

can contain 1 constraint with Type="Fixed".

For example: initial.pak\[media]\classes\models\barrel_02.xml

3. Destructible - these models are dynamic models that can be broken by a truck.

A model of this type contains at least 2 physical bodies with non-zero mass and

more than 1 constraint with BreakOffThreshold.

For example: initial.pak\[media]\classes\models\rus_fence_01.xml

2.3.1. Rules for All Models

2.3.1.1. Rule #1: Attributes for Instanced Rendering

If your model is frequently used in the scene, you need to set up instanced rendering

(instancing) for this model.

Instanced rendering should be set up according to the following rules:

1. For static models (these models do not move, have no animations, are not

breakable), you need to set the following attributes in the <ModelBrand> tag to

true:

Instanced="true"

InstancedAsModel="true"

2. For dynamic models (these models can move or are breakable), in the

<ModelBrand> tag you need to set the Instanced attribute to true and you

should not specify the InstancedAsModel attribute.

I.e., you need to specify only the following:

Instanced="true"

3. For models with animations, instancing is not supported and we do not specify

Instanced or InstancedAsModel attributes in the <ModelBrand> tag.

17

2.3.1.2. Rule #2: DynamicModel parameter

For dynamic models, you need to set DynamicModel="true".

This is valid for all models that need the following:

● Ability to move between different terrain blocks correctly and have collisions

during this movement. For example: barrels.

● Ability to switch between different visual and collision subsets (the <Subset>

tag). For example: _objective models, that can be “built” during objectives (see

“5.15.3. Model Building Settings” in “SnowRunner™ Editor Guide” available as

the “SnowRunner_Editor_Guide.pdf” of the same documentation package).

● Ability to “sink” in the mud (partially).

NOTE: You should not enable the DynamicModel parameter when you use instancing

for dynamic models. I.e., DynamicModel="true" cannot be used simultaneously with

Instanced="true", if there is no InstancedAsModel="true". For details on

instancing, see 2.3.1.1. Rule #1: Attributes for Instanced Rendering.

WARNING: You should use the DynamicModel="true" option only for those models

that do require it since enabling this option affects the performance.

2.3.1.3. Rule #3: Scenarios for Setup of Instancing for Various Types of

Models

1. A model that is rarely used on the map (e.g. the unique building) - no instancing

is required.

2. A model with animation sequences (e.g. windmill) - you should not use

instancing for such models, since animations are not supported for models with

enabled instancing.

3. A model with different visual and collision subsets corresponding to different

states of the model (e.g. the _objective models, that can be “built” during

objectives) - you should not use instancing for such models.

4. A static model that is frequently used on the map (e.g. a rock, a concrete block, a

lamp pole, etc.) - we recommend you to use instancing for static models. I.e., we

recommend you to set the following attributes in the <ModelBrand> tag to true:

Instanced="true"

InstancedAsModel="true"

5. A model with dynamic physics or physical constraints that is frequently used on

the map (e.g. a barrel, a road sign, etc.) - we recommend you to use instancing

for dynamic models. I.e., in the <ModelBrand> tag, you need to set the

18

Instanced attribute to true and you should not specify the InstancedAsModel

attribute:

Instanced="true"

6. A breakable model that is frequently used on the map - instancing for dynamic

models is recommended. I.e., in the <ModelBrand> tag, you need to set the

Instanced attribute to true and you should not specify the InstancedAsModel

attribute:

Instanced="true"

2.3.2. Rules for Configuring Physical Properties

From the point of view of game physics, most static models act like simple collision

objects. They do not move, have no mass, they have no constraints specified for

physical bodies within them. They can only experience collisions with other objects and

may give friction to these objects in case of the contact. Moreover, for some specific

static models collision can be disabled.

Dynamic models participate in the game physics more intensively. Along with

experiencing collisions and friction, they can move, have a mass, have constraints

specified for physical bodies within them, they can even be breakable.

2.3.2.1. Main Rules

1. Shapes of solid bodies must match the visual appearance of the model.

2. For most of the models (both static and dynamic ones), we need to set

Collisions="Dynamic". This means that the solid body of this model has

collisions with other models with Collisions="Dynamic". For example, this is

valid for buildings that have barrels and other objects near them. Until no

constraints are broken, these objects have no collision with the ground surface.

When any constraint of a model becomes broken for the first time, the game

engine adds the collision with the ground automatiсally. This mechanics is

necessary to avoid breaking constraints in the moment of the activation of the

body of the model (see BreakOffThreshold below). Moreover, the gravitation is

also disabled for the model before the break of the first constraint.

3. For most dynamic models, we need to set NoSoftContacts="true". This is

necessary for hard contacts with trucks, to avoid the situation when wheels of the

truck penetrate the model.

4. The camera can function in two modes for both static and dynamic models:

○ ClipCamera="true" - The camera is raised above the model. This is the

default mode.

19

○ ClipCamera="false" - The camera ignores the model and is able to

move inside the geometry of the model. This mode is used for road signs,

fences, poles, and so on.

5. For all dynamic models, we can use the mechanics of breakable constraints -

BreakOffThreshold. The BreakOffThreshold attribute is specified for the

<Constraint> tag (see 6.3.1.1.1. <Constraint>). This parameter defines the

threshold for the force applied to the model before breaking the constraint of the

model. I.e., if the applied force is greater than this threshold, this constraint of the

model will become broken and will stop binding its bodies.

Constraints with specified BreakOffThreshold are intensively used for

constraints that bind the dynamic model “to the world” (to the point where the

model is located on the map) and we recommend such usage.

This approach is necessary to avoid situations when the model falls to the

ground (if it is slightly above it) or when the model jumps from the ground (if it is

placed within it). These effects can occur at the moment of the activation of the

model when a truck drives near it but does not touch it.

It is important to specify the appropriate value of the BreakOffThreshold. For

example, if the constraint specified for a road sign will be too hard, then the truck

will not be able to break it (because of that we recommend testing these

constraints using the small vehicles). However, even hard constraints can break

by themselves due to gravity (this depends on the shape of the model, its center

of mass, and mass of the model). To avoid situations when these constraints

break due to gravity on activation of the model, gravity for the model is disabled

until the first of its constraints is broken.

6. The location of the center of mass of a dynamic model should be specified

correctly. For most of the models, the center of mass is automatically located as

needed - in the center of the shape of the model. This works for such objects as

a cube or a barrel. However, for some objects, its default location is incorrect

(e.g. for road signs). In this case, you can set its correct location by specifying

the offset of the center of mass, e.g. CenterOfMassOffset="(0; -1.6; 0)".

If the location of the center of mass is incorrect and it is located outside the

model or on the border of the model, the model can behave strangely in the

game (e.g. as a roly-poly toy).

NOTE: For some details on the setup of physical properties for static and dynamic

models, please refer to 6.3.1. <PhysicsModel>.

20

2.3.2.2. Rules for Particular Types of Models

NOTE: For main rules on configuring physics for models, see section 4.2.1.

For most models:

In the XML description of most models (both static and dynamic ones), it is convenient to

use a template with Collisions="Dynamic".

For dynamic models, this template should also include NoSoftContacts="true".

You can find a lot of useful templates in the initial.pak archive, in the

[media]_templates\models.xml file there.

NOTE: For info on templates, see the “5.6. Templates (_templates)” section of the

Integration of Trucks and Addons guide available as the

“Integration_of_Trucks_and_Addons.pdf” of the same documentation package).

Regular dynamic models: barrels, boats, and so on:

1. Ensure that the model is not initially placed below the horizontal surface or is

“buried” in the snow or other objects. Otherwise, when the truck drives near it,

the model will become “activated”, its collisions with the surface/snow/objects

underneath will be enabled, and, as a result, the model may start to behave

strangely. For example, the piece of the fence which is buried in deep snow may

try to jump up due to enabled collisions.

2. Along with that, you need to check the settings of the constraints and other things

from the 4.2.1 section above.

Fences:

1. To eliminate collisions of adjacent sections of fences with each other, you need

to set Fence="true" for all models of fences.

2. For most of the fences, ClipCamera="false" is necessary.

3. You need to check the location of the center of mass. Sometimes, it is located on

the border of the model, which results in the “roly-poly toy” effect.

4. Constraints must be breakable. Avoid non-breakable constraints when the truck

may get stuck while driving over the fence.

5. You can improvise and play with the hierarchy and different types of constraints

to achieve a realistic effect of breaking the fence.

Road signs:

1. For most of the road signs, you need to set ClipCamera="false".

2. You need to check the center of mass of a road sign. It should be located near

the base of the road sign.

21

Bridges:

For bridges, you need to set the specific setting: ClipCameraBridge="true".

In this case, the game engine will not raise the camera upwards (above the bridge) when

the truck is driving over it.

22

3. Custom Overlays

SnowRunner Editor allows to integrate custom overlays and use them for creating new

maps together with the regular overlays.

Below you can find an overview of the process of creating a custom overlay. The sample

files used for this overview can be found in the 9.2. Sample Overlays section.

There are two possible types of overlays: texture overlays and geometric overlays.

3.1. Texture Overlays

When creating a map, texture overlays are mostly used for various kinds of roads, i.e.,

objects which are flat and pressed to the terrain.

The subsections below give a brief overview of the process of creating a custom texture

overlay.

3.1.1. Files of a Texture Overlay

Usage of a custom texture overlay in the Editor requires the following files in the

following folders:

Folder Files Comments

Media\textures\overlays .tga files for
Texture and
TextureRelief
parameters

This folder should contain textures that are
used in the <OverlayBrand> tag in the
.xml file of the Class.

Media\prebuild\common .tga files for
HeightmapOffset

and SnowmapMask

parameters

This folder should contain textures that are
used in the < Prebuild> tag in the .xml file
of the Class.

Media\classes\overlays .xml file of the class The .xml file of the class of the overlay
defines its properties: width, flattening, etc.

The textures\overlays and prebuild\common folders must be created in the Media

folder, which is located in the Documents\My Games\SnowRunner\ folder.

3.1.2. Create necessary textures for an overlay

You can create and use any textures for your overlay. Nevertheless, they must follow

certain rules below.

23

Names of textures: Names can contain Latin characters, digits, and underscores ("_").

They must contain no special characters (except "_") and no spaces.

Suffixes in names: Textures should have corresponding postfixes in their names,

written after the original name of the texture. The typical texture set for an overlay should

include a diffuse texture with an alpha channel, a diffuse texture of the relief with an

alpha channel and optional textures for terrain height modifying with the following

postfixes:

__postfix Parameter in XML of the mesh (in the <OverlayBrand> and
<Prebuild> tags)

__d_a Texture, TextureRelief

__s HeightmapOffset

__s_d SnowmapMask

Channels of your textures should correspond to the following:

Channels Parameter in XML of the mesh (in the <OverlayBrand> and
<Prebuild> tags)

Texture TextureRelief

RGB Albedo Map Normal Map

Alpha Roughness Map Height Map

Format: The files of textures must be in the .tga format.

Texture sizes: The dimensions of a texture should be 2N x2N+1. I.e., each side of the

texture should be the power of two, and its width must be twice the size of its height.

Recommended texture size for main overlay texture is 2048x1024. Higher texture sizes

for models might impact the performance or texture streaming in general.Textures for

terrain height changing do not need to have high resolution, the recommended size for

them is 128x64.

Location: You should locate textures for your overlay according to the 3.1.1. Files of the

Texture Overlay section of this guide.

3.1.3. Create the XML file of the Class for an overlay

24

Now, create the XML file of the class of the overlay in the Media\classes\overlays

folder.

For example:

<OverlayBrand

 GenerateDust="true"

 Texture="overlays/us_asphalt_road_double_2__d_a.tga"

 TextureRelief="overlays/us_asphalt_road_double_2_relief__d_a.tga"

>

 <Prebuild

 DefaultWidth="8"

 FlattenPart="1"

 HeightmapOffset="hmoffset_dirt_road__s.tga"

 SnowmapMask="overlay_dirt_path_sn_01__s_d.tga"

 LandmarkColor="(100; 90; 80)"

 LandmarkPart="0.8"

 Layer="2"

</OverlayBrand>

To acquire more information about tags and attributes used for the creating of an

overlay, please refer to the 8. Tags and Attributes of Overlays chapter below.

3.2. Geometric Overlays

Geometric overlays represent such three-dimensional objects as pipes, wires, borders

etc. The process of the creation of a custom geometric overlay is quite similar to the one

of a custom model.

3.2.1. Files of a Geometric Overlay

Usage of a custom geometric overlay in the Editor requires the following files in the

following folders:

Folder Files Comments

Media\meshes\overlays .fbx file of the mesh

.xml file of the mesh

The .fbx file of the overlay contains its
mesh and its collision mesh.

The .xml file of the mesh, stored in the
same folder, contains data on the
material of the overlay and its textures.

Media\textures\overlays .tga files of textures This folder should contain all textures that

25

were assigned to the mesh of the overlay
in the .xml file of the mesh.

Media\classes\overlays .xml file of the class The .xml file of the class of the overlay
defines its properties: friction, overlay
type, etc.

The textures\overlays and prebuild\common folders must be created in the Media

folder, which is located in the Documents\My Games\SnowRunner\ folder.

3.2.2. Create the model of an overlay in the 3D Package

The process of creating a model for an overlay is almost the same as described in the

subsection 2.2.1. Create the model in the 3D Package. However, there are some

additional rules, that must be adhered :

● All vertices and edges of the model must be welded together. Otherwise, when

using a custom overlay in the Editor, gaps may appear between the overlay

segments.

● The model you create must be symmetrical relative to the X coordinate axis (for

Maya, 3DS Max and Blender 3D Packages).

Sample model displayed in the 3D Package is shown below (red lines show the

symmetry):

● The visible mesh must be called “overlay”, and the collision mesh – “cdt”.

Optionally you can create additional mesh of the model for another LOD as the

“far” object. The typical hierarchy of the model is shown below:

26

● The Editor supports only overlays containing a single material. For this reason,

the only one material must be used when creating a model.

● If the type of the geometric overlay in properties of its class is specified as

“Geometric” (for more information about types of geometric overlays, please

refer to 8.1.1. <Prebuild> section), the overlay segments may be displayed

upside down in the Editor.

This type of overlays is mostly used for creating pipes, which are symmetrical, so

that there is no difference between the display in the Editor and in the 3D

Package. But if you want to create an asymmetrical model for the overlay of this

type, note that the model should be turned upside down in a 3D Package to be

displayed correctly in the Editor.

After creating the model, you need to export it to the FBX format in a similar way to

exporting your mod of the truck to FBX. More detailed information can be found in the

“Exporting to Fbx: 3ds Max, Maya, and Blender” guide, available at

https://snowrunner.mod.io/guides/exporting-to-fbx-3ds-max-maya-and-blender.

After the export, you need to put the resulting FBX file into the Media\meshes\overlays

folder.

The rules for naming FBX files for overlays are the same as described in the 2.2.2.

Export a model to the FBX format chapter above, e.g., you can name it

“highway_border.fbx”.

3.2.3. Create textures for an overlay

The recommendations for creating textures for a geometric overlay are the same as for

creating textures for a model (see 2.2.3 Create necessary textures for a model

subsection), except for

Location: You should put textures to the Media\textures\overlays folder.

https://snowrunner.mod.io/guides/exporting-to-fbx-3ds-max-maya-and-blender

27

3.2.4. Create the XML file of the Mesh for an overlay

Create the XML file of the mesh for your FBX file in the Media\meshes\overlays folder.

Names of the created XML file and the FBX file should be the same, except for the

format, e.g., “highway_border.xml” for “highway_border.fbx”.

Here, you need to specify the links to all textures used by the model of an overlay and

some other properties (see the example below). For details on tags and attributes used

here, please refer to 8.2. <CombineXMesh> section.

Sample XML file of the mesh of the overlay:

<CombineXMesh

 Type="Overlay"

>

 <Material

 AlbedoMap="overlays/highway_border__d.tga"

 Name="highway_border_mat"

 NormalMap="overlays/highway_border__n_d.tga"

 ShadingMap="overlays/highway_border__sh_d.tga"

 />

</CombineXMesh>

3.2.5 Create the XML file of the Class for an overlay

Now, you need to create the XML file of the class for the overlay in the

Media\classes\overlays folder.

You should name the created XML file as the FBX file and exactly as XML-mesh file,

e.g., “highway_border.xml”.

In this file, you should specify the properties of the overlay. For example:

<OverlayBrand IsNotStaticSoil="true" BodyFriction="0.5" >

 <Prebuild OverlayType="Geometric" />

</OverlayBrand>

To learn more about tags and attributes used here, please see 8.1. <OverlayBrand>

section below.

28

4. Custom PbrMaterials

Along with custom models and overlays you can create custom PbrMaterials, integrate

them with the Editor and create new maps using them.

Below an overview of the process of creating a custom overlay is described. The sample

files used for this overview can be found in the 9.3. Sample PbrMaterials section.

4.1. Files of a custom PbrMaterial

Usage of a custom PbrMaterial in the Editor requires the following files in the following

folders:

Folder Files Comments

Media\textures\tiles .tga files for
Texture and Normal

parameters

This folder should contain textures that
are used in the <MaterialType> tag in
the .xml file of the PbrMaterial.

Media\classes\terrain_layers .xml file of the class The .xml file of the class of the
PbrMaterial defines its properties: types
of grass, interaction sounds, viscosity,
etc.

The textures\tiles and classes\terrain_layers folders must be created in the Media

folder, which is located in the Documents\My Games\SnowRunner\ folder.

NOTE: As the interaction sounds, you can use only predefined sound files that are

provided with the game. For details, see the Sound, EndEffectSound, and SkidSound

attributes in 8.1. <MaterialType>.

4.2. Create necessary textures for a PbrMaterial

Textures you create for your PbrMaterial must follow rules below:

Texture set: The mandatory texture set for a PbrMaterial must include a diffuse texture

with an alpha channel (Texture) and a diffuse texture of the relief with an alpha channel

(Normal). However, additional textures may be included when creating a snowy layer

(see the table below).

29

Parameter in XML of the mesh
(in the <MaterialType> tag)

Description of the texture

Texture The basic texture of your PbrMaterial.

Normal The relief texture of your PbrMaterial.

ReliefNormals1 The additional texture for snowy layers. For

example, in the “snow_layer” PbrMaterial this

parameter provides an additional normal map

describing the specifics of the forest snow: little

bumps of snow covering small bushes and grass.

ReliefNormals2 The additional texture for snowy layers. In the

“snow_layer” PbrMaterial this parameter provides an

additional normal map describing the specifics of the

snow along the roads: small packed clumps of snow.

SnowDetailNormal The additional texture for snowy layers. In the

“snow_layer” PbrMaterial this parameter provides a

normal map that describes little details of snow

surface: small granular particles of snow.

Texture channels: Channels of your textures should correspond to the following:

Channels Parameter in XML of the mesh (in the <MaterialType> tag)

Texture Normal, ReliefNormals1,
ReliefNormals2,
SnowDetailNormal

RGB Albedo Map Normal Map

Alpha Roughness Map Height Map

Names of textures: Names can contain Latin characters, digits, and underscores ("_").

They must contain no special characters (except "_") and no spaces.

Suffixes in names: All textures here should have the “__d_a” postfix in their names.

Format: The files of textures must be in the .tga format.

Texture sizes: Texture dimensions should be 2Nx2N. I.e., each side of the texture

should be the power of two, and its width has to be equal to its height. Typical texture

30

size for models should not exceed 2048x2048. Higher texture sizes for models might

impact the performance or texture streaming in general.

Location: You should locate textures for your PbrMaterial according to the 4.1. Files of

the custom PbrMaterial section of this guide.

4.3. Create the XML file of the Class for a PbrMaterial

Now, create the XML file of the class of the PbrMaterial in the

Media\classes\terrain_layers folder.

For example:

<MaterialType

 AllowHiddenExtrudes="0.25"

 Texture="tiles/grass_rus_02__d_a.tga"

 Normal="tiles/grass_rus_02_relief__d_a.tga"

 GrassBrush="GrassShortRusA,GrassWeedRusA,GrassWeedRusD"

 IsThickGrass="false"

 Sound="surfaces/surf_grass_mix_loop"

 EndEffectSound="surfaces/hit/hit_grass_rnd"

 SkidSound="surfaces/skidding/skidding_grass_loop"

 MinViscosity="2.0"

/>

PbrMaterials which can be painted with the “Snow” brush require some additional

parameters. You can learn more about snowy PbrMaterials from the 5.2.7. Snow and

the 5.3.1. Material properties sections of the “SnowRunner™ Editor Guide” available

as the “SnowRunner_Editor_Guide.pdf” of the same documentation package.

Sample Class for the predefined PbrMaterial “snow_layer”:

<MaterialType

 AllowHiddenExtrudes="1"

 MinViscosity="2"

 NoGrass="false"

 Normal="tiles/snow_01_relief__d_a.tga"

 ReliefNormals1="tiles/snow_forest_relief__d_a.tga"

 ReliefNormals1BlendContrast="0.7"

 ReliefNormals2="tiles/snow02_relief__d_a.tga"

 ReliefNormals2BlendContrast="0.3"

 ReliefNormals2BlendFactorAtNight="0.4"

 ShadingType="snow"

 SnowAlbedoColor="(230; 230; 230)"

 SnowDetailFactor="0.25"

 SnowDetailNormal="tiles/snow_detail__n_d.tga"

31

 SnowDetailTiling="3.0"

 SnowTintBrightness="0.55"

 Texture="tiles/snow_01__d_a.tga"

 UpVectorSnowAlbedoColor="(210; 210; 210)"

 WetnessAlbedoMultiplier="0.1"

 WetnessRoughnessMultiplier="0.1"

 Sound="surfaces/surf_snow_rnd"

 SkidSound="surfaces/skidding/skidding_snow_loop"

 IsSnowParticles="true"

/>

To learn more about tags and attributes used for the creating of a PbrMaterial, please

refer to the 8.1. <MaterialType> section below.

32

5. <_templates>
This tag allows to inherit some code from templates.

For info on this feature, see the “5.6. Templates (_templates)” section of the

Integration of Trucks and Addons guide (available at

https://snowrunner.mod.io/guides/integration-of-trucks-and-addons-part-2).

In the XML descriptions of models and brushes, we cannot create custom templates and

can only use the existing ones, stored in the initial.pak archive, in the

[media]_templates\ folder.

https://snowrunner.mod.io/guides/integration-of-trucks-and-addons-part-2

33

6. Tags and Attributes of Models
The sections below provide some info on main tags and attributes used in XML

descriptions of models.

The hierarchy of subsections in these sections corresponds to the hierarchy of tags.

6.2. <CombineXMesh>

The root tag of the XML file of the Mesh.

In general, this tag is a root tag in all XML files of meshes (i.e., of model, plant, truck,

etc.). However, this section describes only tags related to models.

Attributes:

● Type="Model"

The “Model” value of this attribute specifies that this XML file of the mesh

corresponds to a model.

6.2.1. <MeshLod>

Allows you to set up distances for LODs of your model.

This tag can be used multiple times if you want to have different LOD settings

corresponding to different meshes (see MeshName below).

Attributes:

● Distances="15, 350"

Distances from camera to model, in meters, with comma as a delimiter. These

distances are used for switching from LOD to LOD for a model.

Number of these distances = Number of LODs of the geometry – 1.

For plants, the system always generates the last LOD (billboard) automatically,

and it should be taken into account during the setup of LOD settings.

● HidingDistance="500"

Distance from the camera, at which the model will be hidden (will not be

rendered).

NOTE: The final lodding distances and the hiding distance of a particular

instance of the model will also depend on the Scale of this instance. The higher

the scale of the object, the greater the resulting distance at which it will

disappear.

34

● MeshName="antenna"

Optional. If it is used, LOD settings are applied to the specified mesh. If it is not

used, LOD settings are applied to all meshes of a model.

6.2.2. <MeshShadow>

Allows you to control the distance for displaying the dynamic shadow of the model.

Attributes:

● HidingDistance="50"

Distance from the camera, in meters. When the distance between the camera

and the model is less than the specified value, the dynamic shadow from this

model will be rendered.

6.2.3. <Material>

Similar to the <Material> tag used for trucks.

See the “6.2. <Material>” section of the Integration of Trucks and Addons guide

available as the “Integration_of_Trucks_and_Addons.pdf” of the same

documentation package.

The same properties of the material can be used here.

For each material, in the Name attribute, you need to specify the exact name of the

material from the FBX file.

When defining textures of this material (AlbedoMap, NormalMap, etc.) you need to

specify paths to the textures that you put into the Media\textures\models folder. The

paths here should be specified relative to the Media\textures\ folder.

However, for models, the <Material> tag can contain the <ModelMaterial> tag, see

below.

6.2.3.1. <ModelMaterial>

Allows to set material properties specific for the model.

Attributes:

● IsWheelTracks="false"

If enabled, trucks will be able to leave tracks on the material of the model.

● NoOcclusion="false"

If enabled, disables occlusion on the material of the model that comes from other

models.

35

6.3. <ModelBrand>

The root tag of the XML file of the class of the model.

Attributes:

● ClipCamera="true"

Defines whether or not the camera can move inside the model. The camera can

work in two modes:

○ ClipCamera="true" - The camera is raised above the model. This is the

default mode.

○ ClipCamera="false" - The camera ignores the model and is able to

move inside the geometry of the model. This mode is used for road signs,

fences, poles, and so on.

● DynamicModel="false"

Marks this model as “dynamic”. See 2.3.1.2. Rule #2: DynamicModel parameter.

● Instanced="false"

Allows you to enable instanced rendering (instancing) for the model. See 2.3.1.1.

Rule #1: Attributes for Instanced Rendering for details.

● InstancedAsModel="false"

Allows you to enable instancing for the static model. See 2.3.1.1. for details.

● AcceptZoneBorderDecals="false"

If this option is enabled, the game will be able to draw the borders of various

game zones (zone for loading cargo, Garage entrance, zone of delivery, and so

on) on the surface of this model. This option is important for large models that

may be located on the ground near game zones.

● CastDayLightmapShadow="true"

If this option is enabled, the static lightmap shadows are enabled for this model

during the day. Static lightmap shadows are rendered at the distance greater

than 50 meters from the camera. At the distance that is less than 50 meters -

dynamic shadows are used. For more details, see the description of the Sun

Static Direction field in “5.1.1. Terrain Properties” in “SnowRunner™ Editor

Guide” available as the “SnowRunner_Editor_Guide.pdf” of the same

documentation package. By default, this option is “true”.

● CastNightLightmapShadow="true"

If this option is enabled, the static lightmap shadows are enabled for this model

during the night. Static lightmap shadows are rendered at the distance greater

than 50 meters from the camera. At the distance that is less than 50 meters -

dynamic shadows are used. For more details, see the description of the Sun

Static Direction field in “5.1.1. Terrain Properties” in “SnowRunner™ Editor

Guide” available as the “SnowRunner_Editor_Guide.pdf” of the same

36

documentation package .

By default, this option is “true”.

● ClipCameraBridge="false"

Allows you to set up the specific behavior of the camera for bridges.

If enabled, the game engine will not raise the camera upwards (above the bridge)

when the truck is driving over it.

● ApplyNormalInReference="false"

Defines model behavior as part of reference. Particularly, whether or not the

model should be inclined if its parent reference has been added to the uneven

terrain of the target map.

● BreakType="SmallTree"

Here you can specify the name of the BreakType that will be played at the

moment when this model becomes broken (when its constraints are disabled).

The BreakType is a combination of an effect and a sound. All BreakTypes used

by the game are described in the BreakTypes.xml, which is stored in the

initial.pak archive at the following path:

[media]\classes\media_data_types\BreakTypes.xml

However, the setup of a BreakType is a topic for the separate document.

● InBackground="false"

Whether or not the model is rendered in the background (e.g. as a farplane).

Lightmaps are not calculated for such objects.

37

6.3.1. <PhysicsModel>

Section that defines the physical properties of the model: physical bodies it consists of

and their interactions with themselves and the environment.

NOTE: For trucks, we were required to specify the path to the XML file of the mesh in

the mandatory Mesh attribute of the <PhysicsModel> tag in the XML file of the class.

However, for models, this attribute is not used. See 2.1.1. Important Note on File

Naming.

Below you can find some notes on the setup of physical properties for static and

dynamic models. For differences between these types, see 2.3.0. Types of Models.

WARNING: Every model must have at least one cdt mesh.

For static models, the general setup of physical properties is the following:

1. A static model has one physical body and one cdt mesh.

A static model can have only one physical body (<Body> tag). If multiple

<Body> tags are specified, only the first one is taken into account, all other

<Body> tags are ignored.

This single <Body> tag should correspond to a single cdt mesh. If multiple

separated collision objects are needed, they should be united in a single cdt

mesh consisting of a necessary number of non-intersecting parts.

As with dynamic models, the relation of the body to the cdt mesh is set with the

help of a frame of a model in the FBX file, which can be specified in the

ModelFrame parameter of the <Body> tag. The system will search for a parent

frame of the cdt mesh (with name starting with cdt_) among the direct children of

the specified frame.

However, most static models typically have the parent frame of the cdt mesh as a

direct child of the root node and the game engine can find it automatically. Thus,

in this case, the ModelFrame parameter of the <Body> tag can be omitted (as in

the sample below).

2. Most models of this type act as simple collision objects.

Physical bodies of static models have no mass. Typically, these models act

simply like static collision objects. Thus, Collisions="Dynamic" needs to be

specified for them (see description of this attribute in 6.3.1.1. <Body>).

So, for most of static models, descriptions of their physics model is fairly simple:

 <PhysicsModel>

 <Body Collisions="Dynamic" />

 </PhysicsModel>

However, if necessary, collisions can be disabled also.

38

For dynamic models, the general setup of physical properties is the following:

1. A model has physical bodies connected to model frames and cdt meshes.

Each model can contain a certain number of physical bodies (<Body> tags) that

correspond to some of the frames of the model in the FBX file. I.e., each body

corresponds to a frame, which can be the bone, the mesh, or the transform

object (in the game engine terms). The relation of the physical body to a frame is

set by the ModelFrame parameter of the <Body> tag, where the name of the

frame is specified. Among direct children of these frames in the FBX hierarchy,

the system searches for collision meshes (their names start with cdt_). I.e., for

each frame mentioned in a <Body> tag, the system tries to find a corresponding

cdt mesh.

Physical bodies of a model can have a hierarchy, i.e. <Body> tags can be

nested within each other. There can be only one <Body> tag on the highest level

of hierarchy. However, each <Body> tag can have as many child <Body> tags

as necessary. The hierarchy of <Body> tags may correspond to the hierarchy of

frames in the FBX file or it can be defined independently. However, each body

should correspond to a frame with a cdt mesh.

NOTE: A dynamic model can have some static parts. I.e., a dynamic model can

contain some static physical bodies with zero mass, which can be connected to

other dynamic physical bodies of the model. In a static model, by default, all

meshes are associated with a single static physical body with a zero mass. In

dynamic models, there can be multiple physical bodies and they can have non-

zero mass.

2. Constraints bind the physical bodies of the model.

Physical bodies of a model are connected by constraints that define how they are

connected (e.g. whether they are on a fixed, motionless connection, or they can

move and rotate, and so on). This is done in a <Constraint> tag. When a

<Body> tag contains a child <Body> tag, these bodies must be connected by a

constraint of some type.

Since <Body> tags correspond to cdt meshes, constraints define how these cdt

meshes are connected to each other. E.g., if one of the connected meshes

experiences a collision, the physics system will calculate its movement and

rotation in this collision based on the constraint.

Moreover, a constraint can connect not only the internal bodies of the model but

the root body of the model to the world. I.e. using the constraint you can bind the

model to the point where this model is located in the Editor. Typically, for this

type of constraint, you will specify the BreakOffThreshold too, see below.

3. Constraints can break (BreakOffThreshold).

All constraints specified for the model can be broken. This is done by specifying

the appropriate value of the BreakOffThreshold attribute of the <Constraint>

tag. This parameter defines the threshold for the force applied to the model

before breaking this constraint. If the applied force is greater than this threshold,

this constraint of the model will become broken and will stop binding its bodies.

39

This BreakOffThreshold is frequently used for constraints that bind the model

to the world (e.g. it can be used for a road sign that will be placed on some

locations on the map). We recommend this approach to avoid incorrect behavior

of the model when a truck drives near it - see 2.3.2.1. Main Rules and 6.3.1.1.1.

<Constraint> for details.

4. Constraints can have an internal “movement muscle” (Motor).

Constraints specified for physical bodies of a model (or body VS world) can have

a “movement muscle”, which is described in a <...Motor> tag within this

constraint. This motor tries to stop the movement of the physical body, which is

allowed by constraint (e.g. as a spring placed in the joint between two bodies). If

a motor is not described, then the connected body will hang loose under the

influence of gravity and inertia according to the limitations of the constraint.

Please note that by <...Motor> tag we actually mean one of the following tags:

6.3.1.1.1.1. <Motor>, 6.3.1.1.1.2. <PlaneConeMotor>, and 6.3.1.1.1.3.

<AllMotor>.

6.3.1.1. <Body>

A physical body.

A physical body is the combination of the attachment point and the collision mesh that

participates in Havok physics. The physical body can collide with other physical bodies.

The physical body can be attached to its parent by various means: move linearly relative

to its parent within some limits, or swing along one or several axes, or be fixed tightly,

etc. The physical body has some physical characteristics: mass, friction, and so on.

The <Body> tags can contain other <Body> and <Constraint> tags, forming the

hierarchy of physical bodies of the model and the connections between them. The

hierarchy of the bodies in the description of the physics model can correspond to the

hierarchy of bones in the FBX file or it may be different.

In any case, this hierarchy must have only one root physical body. However, each

<Body> tag may contain multiple other <Body> tags.

Each physical body must have a corresponding cdt frame. The relation between them is

defined with the help of the appropriate frame of the model:

● The physical body corresponds to a frame from the FBX file (this relation can be

explicitly set by the ModelFrame parameter of the <Body> tag or can be set

implicitly if this parameter is omitted).

● Among direct children of this frame in the FBX hierarchy, the system searches for

a collision mesh (its name should start with cdt_). I.e., for each frame mentioned

in a <Body> tag, the system tries to find a corresponding cdt mesh.

Physical bodies of a model are connected by constraints that define how they are

connected (e.g. whether they are on a fixed, motionless connection, or they can move

and rotate, and so on). This is done in a <Constraint> tag (see 6.3.1.1.1. <Constraint>).

When a <Body> tag contains a child <Body> tag, these bodies must be connected by a

40

constraint of some type.

For static models, there should be only one physical body. This body will have no mass

and will act like a static collision object from the physical point of view. This body must

correspond to a single cdt mesh. Moreover, most static models typically have the parent

frame of the cdt mesh as a direct child of the root node and the game engine can find it

automatically. Because of that, the ModelFrame parameter of the <Body> tag can be

omitted for them. So, for most of the static models, descriptions of their physical body is

fairly simple:

 <PhysicsModel>

 <Body Collisions="Dynamic" />

 </PhysicsModel>

For details, please refer to the 6.3.1. <PhysicsModel>.

For dynamic models, the configuration is more complicated. There can be multiple

physical bodies with the non-zero mass and multiple corresponding cdt meshes. These

bodies must be connected to each other or “to the world” using constraints, which can be

breakable and can have a motor affecting the constraint movement. All these factors will

be taken into account when the model will move (according to Havok physics). For more

details, please refer to the 6.3.1. <PhysicsModel>.

Attributes:

● Collisions="Dynamic"

Defines the collision model (layer) that will be used for the model.

For most of the models, we need to set Collisions="Dynamic". This means

that the solid body of this model has collisions with other models with

Collisions="Dynamic". For example, this is valid for buildings that have the

barrels and other objects near them and for these barrels and objects too.

However, for models with breakable constraints, you need to take into account

that such objects will have no collision with the ground surface until any of their

constraints becomes broken (see 2.3.2.1. Main Rules for Physical Models

above).

Another option here is "None", which can be specified if you want no collisions at

all.

● Friction="0.9"

Allows you to specify the friction coefficient that will be used if the (body of the)

model contacts another physical body (e.g. a truck, another model, and so on).

● Mass="100"

Mass of the physical body. Static models cannot contain solid bodies with non-

zero mass. Dynamic models contain at least one (or more) physical body with

non-zero mass.

41

● NoSoftContacts="false"

For most of the physical (dynamic) models, we need to set this option to "true".

This is necessary for hard contacts of models with trucks, to avoid the situation

when wheels of the truck move inside the model.

● ModelFrame="BoneRoot"

Allows you to specify the frame (a bone, a visual mesh, or a transform object) in

the FBX file that is a parent of the cdt mesh for this body. For details, see 6.3.1.

<PhysicsModel> or the description of the <Body> tag above.

For most static models, this attribute is omitted, since the parent bone of the cdt

mesh there is typically created as a direct child of the root node and the game

engine can find it automatically.

● CenterOfMassOffset="(0; -1.6; 0)"

The shift of the center of mass of the model, relative to the default center of

mass. See 2.3.2.1. Main Rules.

● IsCapsuleCDT="false"

Enabling this option forces the system to use capsules as physical shapes

instead of the initial geometry of cdt mesh. The capsule is created automatically

and roughly covers the volume of the initial cdt. The usage of capsules results in

smoother collisions and is cheaper from the point of view of the performance.

● IsStaticSoil="false"

If enabled, the model surface is considered the soil and, in the game, some

pieces of this soil will be thrown from under the wheels of a truck moving on this

surface.

● IsGameAsphalt="false"

If this option is enabled, the surface of this model will be marked as “asphalt” for

various parts of the game logic.

● DamageMult="1.0"

This coefficient allows you to adjust the amount of damage received by a truck

when it hits this physical body. Frequently, this coefficient is used to completely

disable the damage from this physical body if this damage is not necessary. In

this case, this coefficient is set to zero (DamageMult="0.0").

● AngularDamping="10"

The coefficient of reduction of angular momentum by time. It allows you to slow

down rotating bodies (as it happens in the real world due to the presence of the

atmosphere and other factors).

42

6.3.1.1.1. <Constraint>

A way to bind a physical body to its parent body. I.e., a constraint connects two physical

bodies to each other. Or, it can bind a physical body “to the world” (i.e. to the point

where the model is located on the map).

A constraint can have a child <...Motor> tag that works as a “movement muscle” for this

connection. Please note that by <...Motor> tag we actually mean one of the following

tags: 6.3.1.1.1.1. <Motor>, 6.3.1.1.1.2. <PlaneConeMotor>, and 6.3.1.1.1.3. <AllMotor>.

NOTE: Constraints are used for dynamic models only.

Usage scenarios for the <Constraint> tag are the following:

1. Adding a constraint between a parent physical body and a child physical body.

When a <Body> tag contains a child <Body> tag, these bodies must be bound by a

constraint, which will specify how these bodies are connected. In this case, we need to

specify the constraint for these bodies as a <Constraint> tag that is a child tag of the

second body. Please note that we need to put the <Constraint> tag inside the child

<Body> tag, not into the parent <Body> tag.

I.e. the tag pattern here will be the following:

 <PhysicsModel>

 <Body ... ModelFrame="Bone_1">

 <Body ... ModelFrame="Bone_2">

 <Constraint ... />

 </Body>

 </Body>

 <PhysicsModel>

Where the constraint above binds the parent body (attached to Bone_1) to the child body

(attached to Bone_2).

2. Adding an extra constraint and binding two physical bodies (two frames) that

have no parent-child relation between them.

In this case, the <Constraint> tag is written not as a child tag of the <Body> tag, but as

a direct child of the <PhysicsModel> tag. To specify target frames we want to bind, we

use ModelFrameParent and ModelFrameChild parameters of the <Constraint> tag.

I.e. the tag pattern here will be the following:

 <PhysicsModel>

 <Constraint

 ...

 ModelFrameChild="Bone_1"

 ModelFrameParent="Bone_15"

 />

 ... (some <Body> tags hierarchy)

 </PhysicsModel>

43

3. Binding a model (its root physical body) to the world.

In this case, we need to put the <Constraint> tag inside the root <Body> tag. I.e., the

child body here will be this root <Body> tag and the parent will be the world (the point

where the model is located on the map).

I.e. the tag pattern here will be the following:

 <PhysicsModel>

 <Body ... ModelFrame="Bone_1">

 <Constraint ... />

 ... (if necessary, some <Body> tags hierarchy)

 </Body>

 </PhysicsModel>

Where the constraint above binds the root parent body (attached to Bone_1) to the

world.

Typically, the BreakOffThreshold attribute is also specified for constraints that bind the

model to the world. We recommend this approach to avoid incorrect behavior of the

model when a truck drives near it - see 2.3.2.1. Main Rules for details.

For example, this way the barrel_02 model is bound to the world (code below does not

use templates for convenience, original code uses them):

 <PhysicsModel>

 <Body

 Mass="200"

 NoSoftContacts="True"

 Collisions="Dynamic"

 ModelFrame="BoneRoot"

 >

 <Constraint

 BreakOffThreshold="100"

 Type="Fixed"

 />

 </Body>

 </PhysicsModel>

This code allows a barrel to avoid movement until it is slightly pushed by a truck.

Attributes:

● BreakOffThreshold="500"

Threshold for the force applied to the model. If the applied force is greater than

this threshold, this constraint of the model will become broken and will stop

binding its bodies. See 2.3.2.1. Main Rules.

● Type="Fixed"

The type of the constraint:

○ Fixed - fixed connection (constraint). Describes motionless, fixed

connection.

44

○ Hinge - Rotation by one axis within specified limits. This type of constraint

is suitable for describing a door hinge.

○ UnlimitedHinge - unlimited rotation along a given axis.

○ Ragdoll - Rotation by all axes within specified limits. The connection is

suitable for describing the shoulder joint or bell tongue.

○ Prismatic - linear movement along one axis within specified limits. This

type of constraint is suitable for the description of a pump, hydraulics, and

so on.

● PivotOffset="(1; 0.1; 0)"

Offset of the Pivot of the constraint. I.e., offset of the attachment point of the

constraint relative to the pivot of the parent physical body. Rotations of

constraints of the Hinge and Ragdoll types are performed relative to this point.

● AxisLocal="(0; 0; 1)"

The direction vector of the rotation axis for constraints of Hinge and

UnlimitedHinge types. Default value: (0; 1; 0).

● PlaneAxisLocal="(1; 0; 0)"

The direction of the Plane axis (see picture below), which is perpendicular to the

Twist axis, for the Ragdoll type of constraint. Default value: (1; 0; 0).

For unambiguous determination of this type of constraint, it is necessary to

specify two perpendicular direction vectors. The third vector (Cone, see picture

below) is unambiguously determined by the vector multiplication of

TwistAxisLocal x PlaneAxisLocal.

● TwistAxisLocal="(0; 1; 0)"

The direction of the Twist axis (see picture above) for the Ragdoll type of

constraint. Default value: (0; 1; 0). If we describe the joint of the shoulder,

then this is the axis of rotation of the forearm.

● TwistMin="-50"

Minimum angle of rotation along the Twist axis for the Ragdoll type of

45

constraint, in degrees. By default: 0, limits: [-180, 180].

● TwistMax="70"

Maximum angle of rotation along the Twist axis for the Ragdoll type of

constraint, in degrees. By default: 0, limits: [-180, 180].

● MinLimit="-14"

The lower bound for movement used for the Hinge and Prismatic types of

constraints.

Default value:

○ Hinge: -360, limits [-360, 360].

○ Prismatic: 0

● MaxLimit="10.1"

The upper bound for movement used for the Hinge and Prismatic types of

constraints.

Default value:

○ Hinge: 360, limits [-360, 360].

○ Prismatic: 0.

● ModelFrameParent="joint_1"

The name of the parent frame of the constraint in the FBX file. This attribute is

used when the <Constraint> tag is used outside the <Body> tag. I.e., when you

need to specify an additional constraint between two frames.

● ModelFrameChild="joint_15"

The name of the child frame of the constraint in the FBX file. This attribute is

used when the <Constraint> tag is used outside the <Body> tag. I.e., when you

need to specify an additional constraint between two frames.

● Cone="15"

The maximum angle of the rotation of the bone inside the cone with the Twist

axis (TwistAxisLocal) in the center. This parameter is used for the Ragdoll

type of constraint and is specified in degrees. If you want to set up a rotation

inside an asymmetrical cone, you can use the ConeMin and ConeMax parameters

instead (see below).

● ConeMin="-70"

Minimum angle of rotation along the Cone axis for the Ragdoll type of constraint,

in degrees. By default: -180, limits: [-180, 180]. This attribute is used only if the

Cone attribute is not set.

● ConeMax="70"

Мaximum angle of rotation along the Cone axis for the Ragdoll type of constraint,

in degrees. By default: 180, limits: [-180, 180]. This attribute is used only if the

Cone attribute is not set.

46

● PlaneMin="-50"

Minimum angle of rotation along the Plane axis for the Ragdoll type of constraint,

in degrees. By default: -180, limits: [-180, 180].

● PlaneMax="70"

Maximum angle of rotation along the Plane axis for the Ragdoll type of

constraint, in degrees. By default: 180, limits: [-180, 180].

6.3.1.1.1.1. <Motor>

Motor (“movement muscle”).

If the Body is a bone, the Constraint is the joint between the bones, then the Motor will

be the muscle. If the Motor is not described, then the bone will hang loose under the

influence of gravity and inertia according to the limitations of the Constraint.

Motor is not used with the constraints of the following types: Ragdoll, UnlimitedHinge,

and Rigid.

Attributes:

● Type="Spring"

Type of the motor. For models, we use only the “Spring” type, which

corresponds to a spring.

● Spring="0.5"

The stiffness of the spring. Default value: 0, limits: [0, 1000000000].

● Damping="0.02"

The coefficient of damping.

6.3.1.1.1.2. <PlaneConeMotor>

Motor for describing rotation along the Plane and Сone axes.

This tag is used for the Ragdoll type of the constraint. All attributes are the same as in

<Motor> (see above).

6.3.1.1.1.3. <AllMotor>

Motor for describing rotation along all axes.

This tag is used for the Ragdoll type of the constraint. All attributes are the same as in

<Motor> (see above).

47

6.3.1.2. <Constraint>

Can be specified without the parent <Body> tag when it is necessary to specify an

additional constraint between the physical bodies (frames). In this case, bound bodies

are specified using ModelFrameParent and ModelFrameChild attributes.

See 6.3.1.1.1. <Constraint> for details.

6.3.1.3. <Flare>

Flare. A point source of light that creates a glow around the particular point. Visually

similar to the bright light of a bulb or the distant light from the headlights in the face.

Attributes:

● Pos="(3.759; 1.169; 0.944)"

Light source position.

● Dir="(1; -0.3; 0)"

Direction vector.

● DirAngle="90"

The angle of visibility of the flare, in degrees.

● AttenStart="10"

The start of attenuation of the brightness of the flare, in meters. By default: 60.

● AttenEnd="50"

Maximum length on which the flare is visible. By default: 120.

● Color="g(255; 186; 112) x 2"

Light color and brightness multiplier. Default value: "(0; 0; 0)".

● ColorMultAtDay="0.5"

A coefficient of the light brightness during the daytime.

By default: 1, Values: [0; 1000].

● Size="0.2"

The size of the flare. By default: 1, Values: [0.0001; 1000000].

● SizeAtDay="0.2"

The size of the flare in the daytime.

● SizeMultAtDay="1.0"

The intensity of the flare in the daytime. Frequently, the 0 value is used to disable

the flare in the daytime.

48

● OcclusionOffset="-0.4"

The offset of the flare towards the camera to avoid overlapping with the geometry

of the model (the “towards” direction is set by negative values).

For example, to avoid the flare of the lamp being covered by the lampshade, if

the flare is put inside the lamp.

● Texture="sfx/flare_simple__s_d.tga"

Path to the texture file of the shape of the flare, relative to the Media\textures

folder. Default value: "sfx/flare_simple__s_d.tga".

● AspectRatio="1.4"

The aspect ratio for horizontal and vertical sides of the sprite of the flare.

6.3.2. <Occlusion>

This tag allows you to apply an occlusion texture to the ground surface near your model

in the Editor.

Attributes:

● Size="(79.0; 62.0)"

Z and X coordinates that define the size of the ground surface near the model

where the texture is applied.

● Texture="occlusion_factory01.tga"

The name of the occlusion texture. TBD: Usage of custom occlusion textures is

currently in the process of development. In-game occlusion textures are stored in

the editor.pak archive, within the [prebuild]\common\ folder.

● Intensity="0.5"

Intensity coefficient for the occlusion texture. Possible values are in the [0, 1]

range.

6.3.3. <SnapPoint>

Snapping point that allows you to connect other objects to the model when working with

models inside the Editor.

For example, you can connect wires to the lamp pole (see “5.8.5. Wires: Adding and

connecting them” in “SnowRunner™ Editor Guide” available as the

“SnowRunner_Editor_Guide.pdf” of the same documentation package).

This tag can be used multiple times.

Attributes:

● Pos="(-0.729; 7.733; -0.169)"

Position of the snapping point.

49

6.3.4. <GameData>

Info on the interaction of the model with the environment (various gameplay data).

Attributes:

● LoadType="CargoWoodenPlanks"

This parameter is used for models used as cargo objects. It defines the type of

the cargo. This type is defined in a separate XML class with the same name (e.g.

CargoWoodenPlanks.xml). This class contains links to UI descriptions and

icons used for this type of cargo. The set of these CargoType classes used by

the game can be found in the initial.pak archive, within the

[media]\classes\cargo_types\ folder. The creation of new CargoTypes is

currently not supported.

● PackSlotsNumber="1"

This parameter is used for models used as cargo objects. It defines how many

cargo slots this cargo will occupy.

● LoadAddons="load_logs_short"

This attribute is not used anymore. It does not affect anything.

6.3.4.1. <WinchSocket>

Allows you to set a point on the model for attaching the winch.

Attributes:

● Pos="(2.729; 7.733; 2.169)"

Position of the attachment point.

6.3.4.2. <CraneSocket>

Allows you to set a point on the model for grabbing it with the crane.

Attributes:

● Pos="(2.729; 7.733; 2.169)"

Position of the attachment point.

50

6.3.5. <Landmark>

Allows you to set up how your model will be displayed on the navigation map.

Attributes:

● Mesh="landmarks/factory01_lmk"

Path to the XML-mesh of the landmark model, relative to the Media\meshes

folder and without filename extension.

NOTE: To add a landmark model, which is displayed at the navigation map for

your model, you need to create and add the lowres model in the FBX format (the

.fbx file) and its XML-mesh with the same name (the .xml file) to

Media/meshes/landmarks/ folder. For more details, see 2.2.7. Optional:

Landmark model.

6.3.6. <Subset>

This tag is related to the game logic of _objective models and is out of the scope of this

guide. There will be a separate guide on this topic.

NOTE: For details on using in-game _objective models when creating maps, see see

“5.15.3. Model Building Settings” in “SnowRunner™ Editor Guide” available as the

“SnowRunner_Editor_Guide.pdf” of the same documentation package.

6.3.7. <AnimSubset>

This tag is related to the game logic of _objective models and is out of the scope of this

guide. There will be a separate guide on this topic.

NOTE: For details on using in-game _objective models when creating maps, see see

“5.15.3. Model Building Settings” in “SnowRunner™ Editor Guide” available as the

“SnowRunner_Editor_Guide.pdf” of the same documentation package.

6.3.8. <TrackEvents>

This tag is related to the game logic of _objective models and is out of the scope of this

guide. There will be a separate guide on this topic.

NOTE: For details on using in-game _objective models when creating maps, see see

“5.15.3. Model Building Settings” in “SnowRunner™ Editor Guide” available as the

“SnowRunner_Editor_Guide.pdf” of the same documentation package.

51

6.3.9. <StaticLights>

Section that contains one or more <StaticLight> tags, see below.

6.3.9.1. <StaticLight>

A source of the light that illuminates objects and surfaces in a cone of a light beam.

Attributes:

● Pos="(-0.729; 7.733; -0.169)"

The position of the light source.

● Dir="(1; -0.3; 0)"

The direction vector.

● AttenEnd="50"

The maximum length at which the light illuminates objects. After this distance, the

light diminishes quickly.

● Color="g(255; 186; 112) x 2"

The light color and brightness multiplier.

● CreateSuperLight="true"

If this option is enabled, this means that this light is able to work as a dynamic

source of light, when a truck is located near it. I.e., at night this light will be able

to cast shadows (if they are enabled), and so on.

If this option is disabled, this will result in baking the light from this light source

into the lightmap of the terrain and in absence of dynamical properties for this

light (e.g. there will be no shadows from objects).

● InnerCone="20"

The inner cone (where light does not scatter). By default: 360.

● OuterCone="100"

The outer cone (where light scatters). By default: 0.

● Shadows="false"

Enables shadows for the light.

52

7. Tags and Attributes of Overlays
The sections below provide some info on main tags and attributes used in XML

descriptions of overlays.

The hierarchy of subsections in these sections corresponds to the hierarchy of tags.

7.1. <OverlayBrand>

The root tag of the XML file of the class of the overlay.

Attributes for texture overlays:

• Texture="overlays/texture_name__d_a.tga"

Defines the basic texture of the texture overlay.

• TextureRelief="overlays/texture_name_relief__d_a.tga"

Defines the texture of blending with the surface of the terrain.

For details on channels of Texture and TextureRelief textures, please see

3.1.2. Create necessary textures for an overlay section.

• HeightMapBlendingContrast="0.9"

Spesifies how smooth the blending of the HeightmapOffset texture and the

surface of the terrain will be.

• WheelTracks="0"

Defines the transparency of tracks left on the overlay after truck’s wheels. “0”

corresponds to no tracks left.

• IsExtrudable="false"

If this option is enabled and there is mud on the terrain under the overlay, the

truck leaves ruts and throws clods of dirt. By default: “true”.

• GenerateDust="true"

If this option is enabled, the clouds of dust will appear on the overlay after

physical interaction with the truck. This attribute is enabled for unpaved, dirt

roads, for example.

• IsAsphalt="true"

Sets the friction with the overlay surface corresponding to the friction with the

paved road.

• IsWetnessAsIce="true"

If the surface of the terrain under the overlay is brushed with Wetness, ice will

appear on the overlay.

• IsClampV="true"

Restricts the width of the road to the default width, so that it cannot be modified

in the Editor.

Attributes for geometric overlays:

• IsNotStaticSoil="true"

53

If this attribute is disabled, clouds of dust and clods of dirt will appear when the

track interacts with the overlay.

• NoVeryFar="true"

Determines whether the overlay geometry will be hidden over long distances or

not. Impacts the performance of the game.

• BodyFriction="0.5"

This parameter specifies the friction of the overlay in case of collision. By

default: “1”.

7.1.1. <Prebuild>

Describes the properties used by the Editor. However, when the Editor saves and

rebuilds the map, these properties are packed into the level file, which is used by the

game engine.

Attributes for texture overlays:

• DefaultWidth="7"

Defines the default width of the overlay in meters.

• FlattenPart="1"

Determines the power of flattening when the Flatten parameter in the Editor is

enabled. The “1” correspond to absolute flattening, and the “0” – to no flattening.

• HeightmapOffset=" texture_name__s.tga"

Is used to change the height of the terrain under the overlay in order to make a

truck leave a rut.

• SnowmapMask="texture_name__s_d.tga"

Is quite similar to HeightmapOffset parameter, but it corresponds to the ruts in

snowy roads.

• Layer="2"

Determines the priority of an overlay relative to another overlay if they are

located on the same block of the terrain. The higher value implies the higher

priority.

• LandmarkUseAverageWidth="true"

If this option is enabled, the overlay's landmark on the minimap will be a constant

average width, so that the actual widening or narrowing of the overlay will not be

displayed on the minimap.

• LandmarkColor="(140; 115; 90)"

Specifies the color of the landmark of the overlay on the minimap. The parameter

is set in the RGB color format.

• LandmarkPart="0.8"

Defines the part of the road wisth that will be shown on the mini-map. If the width

of some fragment of the road was changed, it will be displayed accordingly on

the mini-map.

• LandmarkBorderWidth="1"

Determines the width of the landmark border displayed on the minimap.

• LandmarkBorderColor="(80;80;80)"

54

Specifies the border color of the landmark of the overlay on the minimap. The

parameter is set in the RGB color format.

All parameters describing properties of landmarks are displayed both on the

minimap in the Editor and in the game.

Attribute for geometric overlays:

• OverlayType="Geometric"

This parameter is only used for geometric overlays, but not for texture ones.

There are three main types of geometric overlays:

o “Geometric” – overlays of this type don’t hide their ends under the terrain

and curve from point to point smoothly, like pipes;

o “GeometricConform” overlays of this type hide their ends under the

terrain and are pressed to the terrain, like borders;

o “GeometricWire” - overlays of this type don’t hide their ends under the

terrain curve from point to point sharply at an angle, like wires.

7.2. <CombineXMesh>

The root tag of the XML file of the Mesh.

Attributes:

● Type="Overlay"

The “Overlay” value specifies that this XML file of the mesh corresponds to an

overlay.

7.2.1. <Material>

Similar to the <Material> tag used for models. See the 6.2.3. <Material> section fo

more information.

When defining textures of this material (AlbedoMap, NormalMap, etc.) you need to

specify paths to the textures that you put into the Media\textures\overlays. The paths

here should be specified relative to the Media\textures\ folder.

55

8. Tags and Attributes of PbrMaterials
The section below provides some info on main tags and attributes used in XML

descriptions of PbrMaterials.

8.1. <MaterialType>

The root tag of the XML file of the class of the PbrMaterial.

Attributes:

• Texture="tiles/grass_rus_02__d_a.tga"

Defines the basic texture of the PbrMaterial.

• Normal="tiles/grass_rus_02_relief__d_a.tga"

Defines the texture of blending with the surface of the terrain.

For details on channels of Texture and Normal textures, please see 4.2. Create

necessary textures for a PbrMaterial section.

• GrassBrush="GrassShortRusA,GrassShortRus,GrassTallRusA"

Allows to add different types of grass to your PbrMaterial. You can look up

names of grass types in the Distribution Brushes list in the Editor. All of them are

marked with “(grass)” in this list.

56

• AllowHiddenExtrudes="0.25"

Determines the maximum depth of extruded ruts.

• IsThickGrass="false"

Defines whether the terrain grass under a PbrMaterial will be displayed or not.

• Sound="surfaces/surf_grass_mix_loop"

Sets the main sound when the truck interacts with the surface. The general view

of the value of this parameter is the following:

"surfaces/<sound_file_name>".

NOTE: You can only use preset sound files for this parameter. The list of preset

sound files names is performed in the Appendix A: IDs of Sounds Used for

PbrMaterials.

• EndEffectSound="surfaces/hit/hit_grass_rnd"

Sets the sound of effects when the truck interacts with the surface. For example,

dust, pebbles, etc. The general view of the value of this parameter is the

following: "surfaces/hit/<sound_file_name>".

NOTE: Only predefined sounds can be used here, see Sound above.

• SkidSound="surfaces/skidding/skidding_grass_loop"

Sets the sound of interaction with the surface when the track is skidding. The

general view of the value of this parameter is the following:

"surfaces/skidding/<sound_file_name>".

NOTE: Only predefined sounds can be used here, see Sound above.

• MinViscosity="2.0"

Determines the default coefficient of soil viscosity.

• IsExtrudable="false"

Defines whether the ruts will be left on the terrain.

• IsAsphalt="true"

Sets the friction with the overlay surface corresponding to the friction with the

paved road. Defines whether mud traces will be left on the surface. If you paint

the asphalt PbrMaterial with the Wetness brush, it becomes more slippery, but

not softer.

• WheelTracks="0"

Defines the transparency of tracks left on the overlay after truck’s wheels. “0”

corresponds to no tracks left.

• NoGrass="true"

Defines whether any grass will be displayed on a PbrMaterial or not.

• IsWetnessAsIce="true"

If the surface of the terrain under the PbrMaterial is brushed with Wetness, ice

will appear on the surface.

• IsSnowParticles="true"

57

If this option is enabled, small particles of snow will fly out from under the wheels

of a truck.

• ShadingType="snow"

If this option is set as "snow", the PbrMaterial is considered as a snow layer. The

essential parameter for snowy PbrMaterials creation.

• ReliefNormals1="tiles/snow_forest_relief__d_a.tga"

Additional normal map for snowy layers. To get more info see 4.2. Create

necessary textures for a PbrMaterial.

• ReliefNormals1BlendContrast="0.7"

Spesifies how smooth the blending of the ReliefNormals1 texture and the

surface of the terrain will be.

• ReliefNormals2="tiles/snow02_relief__d_a.tga"

Additional normal map for snowy layers. To get more info see 4.2. Create

necessary textures for a PbrMaterial.

• ReliefNormals2BlendContrast="0.3"

Same as ReliefNormals1BlendContrast.

• ReliefNormals2BlendFactorAtNight="0.4"

Spesifies how smooth the blending of the ReliefNormals2 texture and the

surface of the terrain will be at night time.

• SnowDetailNormal="tiles/snow_detail__n_d.tga"

Additional normal map for snowy layers. To get more info see 4.2. Create

necessary textures for a PbrMaterial.

• SnowDetailFactor="0.25"

Determines the power of applying SnowDetailNormal texture.

• SnowDetailTiling="3.0"

Defines the size of visible particles of snow on the surface.

• SnowTintBrightness="0.55"

Defines the brightness intense of a color when you paint the surface with the

Colorization brush.

• SnowAlbedoColor="(230; 230; 230)"

Defines the shade of white for snow layers.

• UpVectorSnowAlbedoColor="(210; 210; 210)"

Sets the shade of snow put on houses, trees, rocks and other objects on snowy

PbrMaterial.

• WetnessAlbedoMultiplier="0.1"

Determines how much darker the shade of snow becomes when you paint the

surface with the Wetness brush.

• WetnessRoughnessMultiplier="0.1"

Determines how much glossier the snow becomes when you paint the surface

with the Wetness brush.

58

9. Samples
NOTE: The main folder with samle materials is the following:

https://drive.google.com/drive/folders/1x4IF8c12-TQ_wiFlYoRh2QGb7VZvzCs8

9.1. Sample Model

All sample files used for creating a custom Model are located at the following archive:

https://drive.google.com/drive/u/0/folders/1EDfWMHFJ53jC4NnMQZi8NhBDeh69MaVw

9.2. Sample Overlays

All sample files used for creating a custom texture Overlay and a custom geometric

Overlay are located at the following archive:

https://drive.google.com/drive/u/0/folders/1KcFkI5Un_-PHUZDRZAxQrDGQDs0rWLU4

9.3. Sample PbrMaterials

All sample files used for creating a custom PbrMaterial are located at the following

archive:

https://drive.google.com/drive/folders/1Sr1RsgMXGxJxhVmhUvUFKZKhD_pLsHdJ

https://drive.google.com/drive/folders/1x4IF8c12-TQ_wiFlYoRh2QGb7VZvzCs8
https://drive.google.com/drive/u/0/folders/1EDfWMHFJ53jC4NnMQZi8NhBDeh69MaVw
https://drive.google.com/drive/u/0/folders/1KcFkI5Un_-PHUZDRZAxQrDGQDs0rWLU4
https://drive.google.com/drive/folders/1Sr1RsgMXGxJxhVmhUvUFKZKhD_pLsHdJ

59

Appendix

Appendix A: IDs of Sounds Used for PbrMaterials

The table below contains names of predefined sound files that can be used for a custom

PbrMaterial. You can set sound files for Sound, EndEffectSound and SkidSound

parameters of the <MaterialType> tag. See the 8.1. <MaterialType> for more details.

№ Sound file name

Sound attribute of the <MaterialType> tag

1 surf_asphalt_loop

2 surf_asphalt_rnd__1

3 surf_asphalt_rnd__2

4 surf_asphalt_rnd__3

5 surf_asphalt_rnd__4

6 surf_asphalt_rnd__5

7 surf_asphalt_rnd__6

8 surf_asphalt_rnd__7

9 surf_asphalt_rnd__8

10 surf_asphalt_rnd__9

11 surf_concrete_rnd__1

12 surf_concrete_rnd__2

13 surf_concrete_rnd__3

14 surf_concrete_rnd__4

15 surf_concrete_rnd__5

16 surf_dirty_loop

17 surf_dirty_rnd__1

18 surf_dirty_rnd__2

19 surf_dirty_rnd__3

20 surf_dirty_rnd__4

21 surf_dirty_rnd__5

22 surf_dirty_rnd__6

23 surf_grass_loop

24 surf_grass_mix_loop

25 surf_grass_mix_rnd__1

26 surf_grass_mix_rnd__2

27 surf_grass_mix_rnd__3

28 surf_grass_mix_rnd__4

29 surf_grass_rnd__1

30 surf_grass_rnd__2

31 surf_grass_rnd__3

60

32 surf_grass_rnd__4

33 surf_grass_rnd__5

34 surf_grass_short_rnd__1

35 surf_grass_short_rnd__2

36 surf_grass_short_rnd__3

37 surf_grass_short_rnd__4

38 surf_grass_short_rnd__5

39 surf_grass_short_rnd__6

40 surf_grass_short_rnd__7

41 surf_grass_short_rnd__8

42 surf_grass_short_rnd__9

43 surf_grass_short_rnd__10

44 surf_grass_short_rnd__11

45 surf_grass_short_rnd__12

46 surf_grass_short_rnd__13

47 surf_grass_short_rnd__14

48 surf_grass_short_rnd__15

49 surf_grass_small_loop

50 surf_grass_tall_rnd__1

51 surf_grass_tall_rnd__2

52 surf_grass_tall_rnd__3

53 surf_grass_tall_rnd__4

54 surf_grass_tall_rnd__5

55 surf_grass_tall_rnd__6

56 surf_grass_tall_rnd__7

57 surf_grass_tall_rnd__8

58 surf_gravel_loop

59 surf_gravel_rnd__1

60 surf_gravel_rnd__2

61 surf_gravel_rnd__3

62 surf_gravel_rnd__4

63 surf_gravel_rnd__5

64 surf_gravel_rnd__6

65 surf_ground_loop

66 surf_ground_rnd__1

67 surf_ground_rnd__2

68 surf_ground_rnd__3

69 surf_ground_rnd__4

70 surf_ground_rnd__5

71 surf_ground_rnd__6

72 surf_ground_rnd__7

73 surf_ground_rnd__8

74 surf_ground_rnd__9

61

75 surf_ice_break_rnd__1

76 surf_ice_break_rnd__2

77 surf_ice_break_rnd__3

78 surf_ice_break_rnd__4

79 surf_ice_break_rnd__5

80 surf_ice_break_rnd__6

81 surf_ice_break_rnd__7

82 surf_ice_break_rnd__8

83 surf_ice_loop

84 surf_ice_rnd__1

85 surf_ice_rnd__2

86 surf_ice_rnd__3

87 surf_ice_rnd__4

88 surf_ice_rnd__5

89 surf_ice_rnd__6

90 surf_rock_loop

91 surf_rock_rnd__1

92 surf_rock_rnd__2

93 surf_rock_rnd__3

94 surf_rock_rnd__4

95 surf_rock_rnd__5

96 surf_sand_loop

97 surf_sand_rnd__1

98 surf_sand_rnd__2

99 surf_sand_rnd__3

100 surf_sand_rnd__4

101 surf_sand_rnd__5

102 surf_sand_rnd__6

103 surf_snow_rnd__1

104 surf_snow_rnd__2

105 surf_snow_rnd__3

106 surf_snow_rnd__4

107 surf_snow_rnd__5

108 surf_snow_rnd__6

109 surf_snow_rnd__7

110 surf_water_eq_loop

111 surf_water_loop

EndEffectSound attribute of the <MaterialType> tag

1 hit_grass_rnd__1

2 hit_grass_rnd__2

3 hit_grass_rnd__3

4 hit_grass_rnd__4

5 hit_grass_rnd__5

62

6 hit_grass_rnd__6

7 hit_grass_rnd__7

8 hit_grass_rnd__8

9 hit_grass_rnd__9

10 hit_grass_rnd__10

11 hit_gravel_rnd__1

12 hit_gravel_rnd__2

13 hit_gravel_rnd__3

14 hit_gravel_rnd__4

15 hit_gravel_rnd__5

16 hit_gravel_rnd__6

17 hit_gravel_rnd__7

18 hit_gravel_rnd__8

19 hit_gravel_rnd__9

20 hit_gravel_rnd__10

21 hit_mud_rnd__1

22 hit_mud_rnd__2

23 hit_mud_rnd__3

24 hit_mud_rnd__4

25 hit_mud_rnd__5

26 hit_mud_rnd__6

27 hit_mud_rnd__7

28 hit_mud_rnd__8

29 hit_mud_rnd__9

30 hit_mud_rnd__10

SkidSound attribute of the <MaterialType> tag

1 skidding_concrete_loop

2 skidding_dirty_loop

3 skidding_grass_loop

4 skidding_gravel_loop

5 skidding_ground_loop

6 skidding_ice_loop

7 skidding_snow_loop

	Revision History
	1. Introduction
	2. Custom Models
	2.1. Files of the Model
	2.1.1. Important Note on File Naming

	2.2. Overview of the Process
	2.2.1. Create the model in the 3D Package
	2.2.2. Export a model to the FBX format
	2.2.3. Create necessary textures for a model
	2.2.4. Create the XML file of the Mesh
	2.2.5. Create the XML file of the Class
	2.2.6. Test the model in the Editor and the Game
	2.2.7. Optional: Landmark model

	2.3. Important Notes on Model Properties
	2.3.0. Types of Models
	2.3.1. Rules for All Models
	2.3.1.1. Rule #1: Attributes for Instanced Rendering
	2.3.1.2. Rule #2: DynamicModel parameter
	2.3.1.3. Rule #3: Scenarios for Setup of Instancing for Various Types of Models

	2.3.2. Rules for Configuring Physical Properties
	2.3.2.1. Main Rules
	2.3.2.2. Rules for Particular Types of Models

	3. Custom Overlays
	3.1. Texture Overlays
	3.1.1. Files of a Texture Overlay
	3.1.2. Create necessary textures for an overlay
	3.1.3. Create the XML file of the Class for an overlay

	3.2. Geometric Overlays
	3.2.1. Files of a Geometric Overlay
	3.2.2. Create the model of an overlay in the 3D Package
	3.2.3. Create textures for an overlay
	3.2.4. Create the XML file of the Mesh for an overlay
	3.2.5 Create the XML file of the Class for an overlay

	4. Custom PbrMaterials
	4.1. Files of a custom PbrMaterial
	4.2. Create necessary textures for a PbrMaterial
	4.3. Create the XML file of the Class for a PbrMaterial

	5. <_templates>
	6. Tags and Attributes of Models
	6.2. <CombineXMesh>
	6.2.1. <MeshLod>
	6.2.2. <MeshShadow>
	6.2.3. <Material>
	6.2.3.1. <ModelMaterial>

	6.3. <ModelBrand>
	6.3.1. <PhysicsModel>
	6.3.1.1. <Body>
	6.3.1.1.1. <Constraint>
	6.3.1.1.1.1. <Motor>
	6.3.1.1.1.2. <PlaneConeMotor>
	6.3.1.1.1.3. <AllMotor>

	6.3.1.2. <Constraint>
	6.3.1.3. <Flare>

	6.3.2. <Occlusion>
	6.3.3. <SnapPoint>
	6.3.4. <GameData>
	6.3.4.1. <WinchSocket>
	6.3.4.2. <CraneSocket>

	6.3.5. <Landmark>
	6.3.6. <Subset>
	6.3.7. <AnimSubset>
	6.3.8. <TrackEvents>
	6.3.9. <StaticLights>
	6.3.9.1. <StaticLight>

	7. Tags and Attributes of Overlays
	7.1. <OverlayBrand>
	7.1.1. <Prebuild>

	7.2. <CombineXMesh>
	7.2.1. <Material>

	8. Tags and Attributes of PbrMaterials
	8.1. <MaterialType>

	9. Samples
	9.1. Sample Model
	9.2. Sample Overlays
	9.3. Sample PbrMaterials

	Appendix
	Appendix A: IDs of Sounds Used for PbrMaterials

